7+ Glue semantics Jobs in India
Apply to 7+ Glue semantics Jobs on CutShort.io. Find your next job, effortlessly. Browse Glue semantics Jobs and apply today!
ROLE & RESPONSIBILITIES:
We are hiring a Senior DevSecOps / Security Engineer with 8+ years of experience securing AWS cloud, on-prem infrastructure, DevOps platforms, MLOps environments, CI/CD pipelines, container orchestration, and data/ML platforms. This role is responsible for creating and maintaining a unified security posture across all systems used by DevOps and MLOps teams — including AWS, Kubernetes, EMR, MWAA, Spark, Docker, GitOps, observability tools, and network infrastructure.
KEY RESPONSIBILITIES:
1. Cloud Security (AWS)-
- Secure all AWS resources consumed by DevOps/MLOps/Data Science: EC2, EKS, ECS, EMR, MWAA, S3, RDS, Redshift, Lambda, CloudFront, Glue, Athena, Kinesis, Transit Gateway, VPC Peering.
- Implement IAM least privilege, SCPs, KMS, Secrets Manager, SSO & identity governance.
- Configure AWS-native security: WAF, Shield, GuardDuty, Inspector, Macie, CloudTrail, Config, Security Hub.
- Harden VPC architecture, subnets, routing, SG/NACLs, multi-account environments.
- Ensure encryption of data at rest/in transit across all cloud services.
2. DevOps Security (IaC, CI/CD, Kubernetes, Linux)-
Infrastructure as Code & Automation Security:
- Secure Terraform, CloudFormation, Ansible with policy-as-code (OPA, Checkov, tfsec).
- Enforce misconfiguration scanning and automated remediation.
CI/CD Security:
- Secure Jenkins, GitHub, GitLab pipelines with SAST, DAST, SCA, secrets scanning, image scanning.
- Implement secure build, artifact signing, and deployment workflows.
Containers & Kubernetes:
- Harden Docker images, private registries, runtime policies.
- Enforce EKS security: RBAC, IRSA, PSP/PSS, network policies, runtime monitoring.
- Apply CIS Benchmarks for Kubernetes and Linux.
Monitoring & Reliability:
- Secure observability stack: Grafana, CloudWatch, logging, alerting, anomaly detection.
- Ensure audit logging across cloud/platform layers.
3. MLOps Security (Airflow, EMR, Spark, Data Platforms, ML Pipelines)-
Pipeline & Workflow Security:
- Secure Airflow/MWAA connections, secrets, DAGs, execution environments.
- Harden EMR, Spark jobs, Glue jobs, IAM roles, S3 buckets, encryption, and access policies.
ML Platform Security:
- Secure Jupyter/JupyterHub environments, containerized ML workspaces, and experiment tracking systems.
- Control model access, artifact protection, model registry security, and ML metadata integrity.
Data Security:
- Secure ETL/ML data flows across S3, Redshift, RDS, Glue, Kinesis.
- Enforce data versioning security, lineage tracking, PII protection, and access governance.
ML Observability:
- Implement drift detection (data drift/model drift), feature monitoring, audit logging.
- Integrate ML monitoring with Grafana/Prometheus/CloudWatch.
4. Network & Endpoint Security-
- Manage firewall policies, VPN, IDS/IPS, endpoint protection, secure LAN/WAN, Zero Trust principles.
- Conduct vulnerability assessments, penetration test coordination, and network segmentation.
- Secure remote workforce connectivity and internal office networks.
5. Threat Detection, Incident Response & Compliance-
- Centralize log management (CloudWatch, OpenSearch/ELK, SIEM).
- Build security alerts, automated threat detection, and incident workflows.
- Lead incident containment, forensics, RCA, and remediation.
- Ensure compliance with ISO 27001, SOC 2, GDPR, HIPAA (as applicable).
- Maintain security policies, procedures, RRPs (Runbooks), and audits.
IDEAL CANDIDATE:
- 8+ years in DevSecOps, Cloud Security, Platform Security, or equivalent.
- Proven ability securing AWS cloud ecosystems (IAM, EKS, EMR, MWAA, VPC, WAF, GuardDuty, KMS, Inspector, Macie).
- Strong hands-on experience with Docker, Kubernetes (EKS), CI/CD tools, and Infrastructure-as-Code.
- Experience securing ML platforms, data pipelines, and MLOps systems (Airflow/MWAA, Spark/EMR).
- Strong Linux security (CIS hardening, auditing, intrusion detection).
- Proficiency in Python, Bash, and automation/scripting.
- Excellent knowledge of SIEM, observability, threat detection, monitoring systems.
- Understanding of microservices, API security, serverless security.
- Strong understanding of vulnerability management, penetration testing practices, and remediation plans.
EDUCATION:
- Master’s degree in Cybersecurity, Computer Science, Information Technology, or related field.
- Relevant certifications (AWS Security Specialty, CISSP, CEH, CKA/CKS) are a plus.
PERKS, BENEFITS AND WORK CULTURE:
- Competitive Salary Package
- Generous Leave Policy
- Flexible Working Hours
- Performance-Based Bonuses
- Health Care Benefits
Core Responsibilities:
- The MLE will design, build, test, and deploy scalable machine learning systems, optimizing model accuracy and efficiency
- Model Development: Algorithms and architectures span traditional statistical methods to deep learning along with employing LLMs in modern frameworks.
- Data Preparation: Prepare, cleanse, and transform data for model training and evaluation.
- Algorithm Implementation: Implement and optimize machine learning algorithms and statistical models.
- System Integration: Integrate models into existing systems and workflows.
- Model Deployment: Deploy models to production environments and monitor performance.
- Collaboration: Work closely with data scientists, software engineers, and other stakeholders.
- Continuous Improvement: Identify areas for improvement in model performance and systems.
Skills:
- Programming and Software Engineering: Knowledge of software engineering best practices (version control, testing, CI/CD).
- Data Engineering: Ability to handle data pipelines, data cleaning, and feature engineering. Proficiency in SQL for data manipulation + Kafka, Chaossearch logs, etc for troubleshooting; Other tech touch points are ScyllaDB (like BigTable), OpenSearch, Neo4J graph
- Model Deployment and Monitoring: MLOps Experience in deploying ML models to production environments.
- Knowledge of model monitoring and performance evaluation.
Required experience:
- Amazon SageMaker: Deep understanding of SageMaker's capabilities for building, training, and deploying ML models; understanding of the Sagemaker pipeline with ability to analyze gaps and recommend/implement improvements
- AWS Cloud Infrastructure: Familiarity with S3, EC2, Lambda and using these services in ML workflows
- AWS data: Redshift, Glue
- Containerization and Orchestration: Understanding of Docker and Kubernetes, and their implementation within AWS (EKS, ECS)
Skills: Aws, Aws Cloud, Amazon Redshift, Eks
Must-Haves
Machine Learning +Aws+ (EKS OR ECS OR Kubernetes) + (Redshift AND Glue) + Sagemaker
Notice period - 0 to 15days only
Hybrid work mode- 3 days office, 2 days at home
MUST-HAVES:
- Machine Learning + Aws + (EKS OR ECS OR Kubernetes) + (Redshift AND Glue) + Sage maker
- Notice period - 0 to 15 days only
- Hybrid work mode- 3 days office, 2 days at home
SKILLS: AWS, AWS CLOUD, AMAZON REDSHIFT, EKS
ADDITIONAL GUIDELINES:
- Interview process: - 2 Technical round + 1 Client round
- 3 days in office, Hybrid model.
CORE RESPONSIBILITIES:
- The MLE will design, build, test, and deploy scalable machine learning systems, optimizing model accuracy and efficiency
- Model Development: Algorithms and architectures span traditional statistical methods to deep learning along with employing LLMs in modern frameworks.
- Data Preparation: Prepare, cleanse, and transform data for model training and evaluation.
- Algorithm Implementation: Implement and optimize machine learning algorithms and statistical models.
- System Integration: Integrate models into existing systems and workflows.
- Model Deployment: Deploy models to production environments and monitor performance.
- Collaboration: Work closely with data scientists, software engineers, and other stakeholders.
- Continuous Improvement: Identify areas for improvement in model performance and systems.
SKILLS:
- Programming and Software Engineering: Knowledge of software engineering best practices (version control, testing, CI/CD).
- Data Engineering: Ability to handle data pipelines, data cleaning, and feature engineering. Proficiency in SQL for data manipulation + Kafka, Chaos search logs, etc. for troubleshooting; Other tech touch points are Scylla DB (like BigTable), OpenSearch, Neo4J graph
- Model Deployment and Monitoring: MLOps Experience in deploying ML models to production environments.
- Knowledge of model monitoring and performance evaluation.
REQUIRED EXPERIENCE:
- Amazon SageMaker: Deep understanding of SageMaker's capabilities for building, training, and deploying ML models; understanding of the Sage maker pipeline with ability to analyze gaps and recommend/implement improvements
- AWS Cloud Infrastructure: Familiarity with S3, EC2, Lambda and using these services in ML workflows
- AWS data: Redshift, Glue
- Containerization and Orchestration: Understanding of Docker and Kubernetes, and their implementation within AWS (EKS, ECS)
Job Overview:
We are seeking an experienced AWS Data Engineer to join our growing data team. The ideal candidate will have hands-on experience with AWS Glue, Redshift, PySpark, and other AWS services to build robust, scalable data pipelines. This role is perfect for someone passionate about data engineering, automation, and cloud-native development.
Key Responsibilities:
- Design, build, and maintain scalable and efficient ETL pipelines using AWS Glue, PySpark, and related tools.
- Integrate data from diverse sources and ensure its quality, consistency, and reliability.
- Work with large datasets in structured and semi-structured formats across cloud-based data lakes and warehouses.
- Optimize and maintain data infrastructure, including Amazon Redshift, for high performance.
- Collaborate with data analysts, data scientists, and product teams to understand data requirements and deliver solutions.
- Automate data validation, transformation, and loading processes to support real-time and batch data processing.
- Monitor and troubleshoot data pipeline issues and ensure smooth operations in production environments.
Required Skills:
- 5 to 7 years of hands-on experience in data engineering roles.
- Strong proficiency in Python and PySpark for data transformation and scripting.
- Deep understanding and practical experience with AWS Glue, AWS Redshift, S3, and other AWS data services.
- Solid understanding of SQL and database optimization techniques.
- Experience working with large-scale data pipelines and high-volume data environments.
- Good knowledge of data modeling, warehousing, and performance tuning.
Preferred/Good to Have:
- Experience with workflow orchestration tools like Airflow or Step Functions.
- Familiarity with CI/CD for data pipelines.
- Knowledge of data governance and security best practices on AWS.
Job Title : Tech Lead - Data Engineering (AWS, 7+ Years)
Location : Gurugram
Employment Type : Full-Time
Job Summary :
Seeking a Tech Lead - Data Engineering with expertise in AWS to design, build, and optimize scalable data pipelines and data architectures. The ideal candidate will have experience in ETL/ELT, data warehousing, and big data technologies.
Key Responsibilities :
- Build and optimize data pipelines using AWS (Glue, EMR, Redshift, S3, etc.).
- Maintain data lakes & warehouses for analytics.
- Ensure data integrity through quality checks.
- Collaborate with data scientists & engineers to deliver solutions.
Qualifications :
- 7+ Years in Data Engineering.
- Expertise in AWS services, SQL, Python, Spark, Kafka.
- Experience with CI/CD, DevOps practices.
- Strong problem-solving skills.
Preferred Skills :
- Experience with Snowflake, Databricks.
- Knowledge of BI tools (Tableau, Power BI).
- Healthcare/Insurance domain experience is a plus.

at Altimetrik
-Expertise in building AWS Data Engineering pipelines with AWS Glue -> Athena -> Quick sight.
-Experience in developing lambda functions with AWS Lambda.
-
Expertise with Spark/PySpark
– Candidate should be hands on with PySpark code and should be able to do transformations with Spark
-Should be able to code in Python and Scala.
-
Snowflake experience will be a plus

Urgent Openings with one of our client
Experience : 3 to 7 Years
Number of Positions : 20
Job Location : Hyderabad
Notice : 30 Days
1. Expertise in building AWS Data Engineering pipelines with AWS Glue -> Athena -> Quick sight
2. Experience in developing lambda functions with AWS Lambda
3. Expertise with Spark/PySpark – Candidate should be hands on with PySpark code and should be able to do transformations with Spark
4. Should be able to code in Python and Scala.
5. Snowflake experience will be a plus
Hadoop and Hive requirements as good to have or understanding of is enough.


