4+ Glue semantics Jobs in Hyderabad | Glue semantics Job openings in Hyderabad
Apply to 4+ Glue semantics Jobs in Hyderabad on CutShort.io. Explore the latest Glue semantics Job opportunities across top companies like Google, Amazon & Adobe.
ROLES AND RESPONSIBILITIES:
You will be responsible for architecting, implementing, and optimizing Dremio-based data Lakehouse environments integrated with cloud storage, BI, and data engineering ecosystems. The role requires a strong balance of architecture design, data modeling, query optimization, and governance enablement in large-scale analytical environments.
- Design and implement Dremio lakehouse architecture on cloud (AWS/Azure/Snowflake/Databricks ecosystem).
- Define data ingestion, curation, and semantic modeling strategies to support analytics and AI workloads.
- Optimize Dremio reflections, caching, and query performance for diverse data consumption patterns.
- Collaborate with data engineering teams to integrate data sources via APIs, JDBC, Delta/Parquet, and object storage layers (S3/ADLS).
- Establish best practices for data security, lineage, and access control aligned with enterprise governance policies.
- Support self-service analytics by enabling governed data products and semantic layers.
- Develop reusable design patterns, documentation, and standards for Dremio deployment, monitoring, and scaling.
- Work closely with BI and data science teams to ensure fast, reliable, and well-modeled access to enterprise data.
IDEAL CANDIDATE:
- Bachelor’s or Master’s in Computer Science, Information Systems, or related field.
- 5+ years in data architecture and engineering, with 3+ years in Dremio or modern lakehouse platforms.
- Strong expertise in SQL optimization, data modeling, and performance tuning within Dremio or similar query engines (Presto, Trino, Athena).
- Hands-on experience with cloud storage (S3, ADLS, GCS), Parquet/Delta/Iceberg formats, and distributed query planning.
- Knowledge of data integration tools and pipelines (Airflow, DBT, Kafka, Spark, etc.).
- Familiarity with enterprise data governance, metadata management, and role-based access control (RBAC).
- Excellent problem-solving, documentation, and stakeholder communication skills.
PREFERRED:
- Experience integrating Dremio with BI tools (Tableau, Power BI, Looker) and data catalogs (Collibra, Alation, Purview).
- Exposure to Snowflake, Databricks, or BigQuery environments.
- Experience in high-tech, manufacturing, or enterprise data modernization programs.
Core Responsibilities:
- The MLE will design, build, test, and deploy scalable machine learning systems, optimizing model accuracy and efficiency
- Model Development: Algorithms and architectures span traditional statistical methods to deep learning along with employing LLMs in modern frameworks.
- Data Preparation: Prepare, cleanse, and transform data for model training and evaluation.
- Algorithm Implementation: Implement and optimize machine learning algorithms and statistical models.
- System Integration: Integrate models into existing systems and workflows.
- Model Deployment: Deploy models to production environments and monitor performance.
- Collaboration: Work closely with data scientists, software engineers, and other stakeholders.
- Continuous Improvement: Identify areas for improvement in model performance and systems.
Skills:
- Programming and Software Engineering: Knowledge of software engineering best practices (version control, testing, CI/CD).
- Data Engineering: Ability to handle data pipelines, data cleaning, and feature engineering. Proficiency in SQL for data manipulation + Kafka, Chaossearch logs, etc for troubleshooting; Other tech touch points are ScyllaDB (like BigTable), OpenSearch, Neo4J graph
- Model Deployment and Monitoring: MLOps Experience in deploying ML models to production environments.
- Knowledge of model monitoring and performance evaluation.
Required experience:
- Amazon SageMaker: Deep understanding of SageMaker's capabilities for building, training, and deploying ML models; understanding of the Sagemaker pipeline with ability to analyze gaps and recommend/implement improvements
- AWS Cloud Infrastructure: Familiarity with S3, EC2, Lambda and using these services in ML workflows
- AWS data: Redshift, Glue
- Containerization and Orchestration: Understanding of Docker and Kubernetes, and their implementation within AWS (EKS, ECS)
Skills: Aws, Aws Cloud, Amazon Redshift, Eks
Must-Haves
Amazon SageMaker, AWS Cloud Infrastructure (S3, EC2, Lambda), Docker and Kubernetes (EKS, ECS), SQL, AWS data (Redshift, Glue)
Skills : Machine Learning, MLOps, AWS Cloud, Redshift OR Glue, Kubernetes, Sage maker
******
Notice period - 0 to 15 days only
Location : Pune & Hyderabad only

at Altimetrik
-Expertise in building AWS Data Engineering pipelines with AWS Glue -> Athena -> Quick sight.
-Experience in developing lambda functions with AWS Lambda.
-
Expertise with Spark/PySpark
– Candidate should be hands on with PySpark code and should be able to do transformations with Spark
-Should be able to code in Python and Scala.
-
Snowflake experience will be a plus

Urgent Openings with one of our client
Experience : 3 to 7 Years
Number of Positions : 20
Job Location : Hyderabad
Notice : 30 Days
1. Expertise in building AWS Data Engineering pipelines with AWS Glue -> Athena -> Quick sight
2. Experience in developing lambda functions with AWS Lambda
3. Expertise with Spark/PySpark – Candidate should be hands on with PySpark code and should be able to do transformations with Spark
4. Should be able to code in Python and Scala.
5. Snowflake experience will be a plus
Hadoop and Hive requirements as good to have or understanding of is enough.
